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Thermodynamic control is well suited to the enantioselective Table 1. Stereoselective Synthesis of the Sulfoxides
construction of atropisomeric molecules whose precursors display

some degree of rotational freeddmEarlier examples of thermo- starting yield
dynamic?:ontrol in the asymmetric synthesis of gtropisomers used My material NRY, R! R product (%) lal
(—)-ephedriné and a proline-derived diamifeas auxiliaries to 1 la Ni-Pr, benzo® 3a 89 2985
control the stereochemistry of atropisomeric amitlda. this 5 b NEt, benzo®  3b 7 972
communication we show that the temporary presence of an .
enantiomerically pure sulfoxide substituent is enough to exert > 1€ >(3< benzo® 3¢ 84 4654
complete thermodynamic control over the stereochemistry of an N
atropisomer. Easy introductibrand removadl by organolithium 4 1d Ni-Pr, MeO MeO 3d 87 -3238
c_hemnstry mgkes Fhe sulfoxlde a verse_ltlle precursor to a range of 5 le Ni-Pr, MeO H 3e 89 852
highly enantiomerically enriched atropisomeric products.

Amides 1a—1¢® were lithiated withs-BuLi in THF® to give 6 If >(3< MeO  H 3 79 -368
organolithiums2a—2g which were treated with @®2S5R,Ss)- N
(—)-menthyl p-toluenesulfinate. Excellent yields of sulfoxides 5 1g Ni-Pr, H H 3g 81 -852
3a—3g were obtained (Table 1) as single enantiorifersy
substitution of menthoxide with inversiénand (to the limits of aSee Supporting Information for detaifs1-Naphthamide.

NMR detection) as single atropisomeric diastereoisortiers.

Organometallic nucleophiles attack sulfoxides with displacement J22/€ 2. Asymmetric Synthesis of Atropisomeric Amides

of the most stable organometallid@reatment of sulfoxide8a—f enry SMT  E' product yield (%) ee(%) [o®  tf

with t-BuLi (3 equiv) at—78 °C in THF accordingly regenerated 1 3a Me 4a(E= Me) 91 98 +65.2 36K
ith N at_7g0 : 2 3a Et 4a(E=EY) 97 96 1624 43H

the organolithiumg. After 5 min at—78°C, an electrophile (Table 3 3a PhCO  4a(E—COHPh) 94 Joo 1369 -

2) was added, the reaction was quickly worked up, and the products

4 3a (CHp)CO 4a(E=COH(CH);) 94 92 +774  —
4a—f, which in many cases are known to be atropisomeviere 5 3a CHBrf 4a(E=Br) 91 >99  +41.2 2004
isolated and purified by flash chromatography with cold eluents. & 3a CHd"  4aE=1) 92 99 1392 110H
. . 7 3b variou§ 4b 50-65 12-22 — -
Most of the products (Table 2) were almost enantiomerically pure. g 3¢ Eq 4c(E=Et) 94 >99 4446 —
The stereochemistry of and thereforeR)-2 confirms for the 9 3d CHBr° 4d(E=Br) 91 88 +14.4 -
st ti _lithi ; ; ot i 10 3e CHBre 4e(E=Br) 92 84 +50.8 334
first time that a 2-lithio substituent is capable of restricting rotation 11 3 CHBre 4f (E=Bn o4 26 e o

about an amide ArCO bond at—78 °C.13 Sulfoxides3 must be
fOI’med Wlth Uniform absolute Stereochemistry at bOth the SulfOXide a Starting nf]ateria”J See Supporting Information for detailsEstimated
stereogenic center and the amide stereogenic axis, and must havbalf-life for racemisation at 25C (assuming invariance cAGrad with

; ; ; NP ; temperature) calculated by repeated sampling of ee over a period of time.
anti relative stereochem_lstry. Sin2és chiral and t_he precursorto o ab.e 1,2-Dihalosthane. By polarimetry at 40C. ¢ By repeated
3, (#)-2, must be racemic, some form of dynamic resolution must p| ¢ of a sample incubated at 4C. h Mel or C;H4Br> or PhCO.

operate in the formation ofnti-3, under either kineti¢ or

thermodynami¥® control (Scheme 1). oxidation of5c at —15 °C in an NMR tube. A 75:25 mixture (by
To assess the relative stability of the sulfoxides’ diastereoisomers,*H NMR) of two sulfoxides6c formed rapidly on addition of
sulfides5a—d26 were oxidized to sulfoxide6a—d with m-CPBA m-CPBA, but on warming to O°C this ratio decayed to an

(Scheme 2). After workup at room temperature, a single diastereo- €quilibrium value of>99:1 over a period of 2 h. We therefore

isomer of6a—c was isolated? but a mixture of diastereoisomers deduce a remarkably short half-life for epimerisatioobf about

of 6d. These results point to a reaction under thermodynamic 15 and 1 min at 0 and 28C, respectively.

control, made possible by the poor barriers to bond rotation offered ~ Our rationale for the enantioselective formation®f-@ (Scheme

by second-row elements (%i,P2¢ 9. Rapid equilibration at 1) is therefore that%)-2 reacts with (R 2S5R Ss)-(—)-menthyl

ambient temperature gives single atropisomerssafc, while p-toluenesulfinate to form a mixture sfn andanti-3, but that on

selectivity in 6d is marred by a partial mismatch between the warming to room temperature, the less statye3 is fully and

thermodynamic influences of the sulfoxide and of the Si-bearing rapidly converted tanti-3.1%

centerzad Additions of 2 to t-BUuCHO are diastereoselecti¥eand give
Further evidence that any kinetic stereoselectivity in the formation principally thesyndiastereoisomer of, which epimerises tanti-7

of 6 is overturned by thermodynamic factors was provided by oOn heating. Sulfoxide8a, 3c, and3f were treated with-BuLi (3
equiv) and-BuCHO to yield the alcoholga, 7c, and7f in high ee

* To whom correspondence should be addressed. E-mail: j.p.clayden@man.ac.uk.(Scheme 3} syn7awas also obtained with good ee by bromine
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Scheme 1. Asymmetric Synthesis of Atropisomeric Amides by

Lithium—Sulfoxide—Lithium Exchange?

1 1
R’\N,R R’\N,R

R‘l

® (ii)

(R)-2 anti-3

aReagents: (i) s-BuLi, THF-78 °C; (i) (1R2S5R,Ss)-(—)-menthyl
p-toluenesulfinate;-78 to 0°C then NHCI, 20 °C; (iii) t-BuLi (3 equiv),
THF, =78 °C, 5 min.; (iv) E" (Table 2).

Scheme 2. Oxidation of 2-Sulfenyl-Substituted Amides?

FPry
(o]
S0
R=Ph S5a @), (i) anti-6a? syn-6a >98:2, 78%
+Bu 5b }-——- {anti—ﬁb syn-6b >98:2, 74%
Me b&¢ (i) anti-6¢ syn-6¢ i >95:5, 74%
anti-6c syn-6¢ (i [= 75:25P
Prz Ni-Pro
Mess) .+ Mesy O
~ ‘R 7o)
R % ¥

R=Ph 5d —M 75:25

anti-6d syn-6d°

aRelative stereochemistry confirmed by X-ray crystallographigx-
periment carried out in NMR tube: Axial stereochemistry unknown.
dReagents: (im-CPBA, CHCl,, —15 °C; (ii) aqueous workup, 20C;
(iii) 0 °C, 2 h.

Scheme 3 “Fixing” the Amide Stereochemistry?@
anti-3

: 1~. Rt 2
(')l . R N’R R (o]
o= R3
[R—Z] 2
R —
(ii)T ®
4a . R3 +)-9
(E = Br) 1 J} 1 ('}' 8 )
SN SM RZR3  7,yd(ee) (+)9, yd (ee)
o= OH 3a benzo 7a,91(94) 9a, 90 (84)
R2 : 4a benzo 7a, 89 (87) -
3c benzo 7c, 90 (n/d) 9a, 94 (>99)

3t MeO,H 7f 89 (n/d)
antit7 3¢ H,H 79,77 (0)

aReagents: (ix-BuLi (3 equiv), THF,—78 °C, 10 min; (ii) t-BuLi
(1 equiv), THF,—78°C, 10 min; (iii) t-BuCHO; (iv) MeSQH, MeOH, A,
5—10 min.

9t, 94 (78)

lithium exchange of R)-4a (E = Br).2° Lactonisation of7a, 7c,
and7f gave benzofuranoné&m and9f in good ee, presumably by
stereospecific capture of a forming benzylic cati8#' The
conversion of enantiomerically pure amides to amide-free targets
illustrates the potential for sulfoxides as a source of chiral meffory.
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